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1 Mean Value Theorem

Claim:

Let f(x) ∈ C [a,b](x), where C [a,b](x) is the set of all non-singular functions of a real variable x
that are continuous on an interval [a, b] of R. Then for some x0 ∈ [a, b], f(x0) = favg[a, b].

Proof:

First, note that

favg[a, b] =

∫ b

a
f(x)dx

(b− a)
. (1)

Since in one-variable we can interpret a definite integral as the (signed) area bounded between the
curve defined by f(x) and the x-axis (Riemann sum), we can put a bound on the integral. Define
f̃(x) = f(x)−min f(x) ≥ 0. Then from Eq. (1),

0 ≤ f̃avg[a, b] ≤ max f̃(x)

or equivalently,
min f(x) ≤ favg[a, b] ≤ max f(x). (2)

The coordinates corresponding to the minimum and maximum of f(x), xmin and xmax, form a
subinterval [xmin, xmax] ∈ [a, b]. Since f(x) ∈ C [a,b](x), for x ∈ [xmin, xmax] f(x) must take on all
values in [min f(x),max f(x)]. Therefore for some (possibly multiple) x0 ∈ [xmin, xmax] ∈ [a, b],
f(x0) = favg[a, b].

Continuity of the functions is important, because if the functions are not continuous then this
is only true for a restricted set of discontinuous functions. For example, one function that does not
satisfy the MVT (for an interval containing the discontinuity) is

f(x) =

{
1 x ≥ 0

0 x < 0
, (3)

for any finite interval [a, b] with a < 0 and b > 0 since 0 < favg = b
b−a < 1 and f(x) is either 0 or

1. As long as f(x) is continuous (and non-singular) on an interval, then the MVT holds on that
interval.
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2 Leibniz rule

What we want here is a formula for the rate of change of the definite integral of a surface f(x, t)

I[f(x, t); a(x), b(x)] =

∫ b(x)

a(x)

f(x, t)dt (4)

as we increase x, i.e. we want dI/dx. Here, a(x) and b(x) are continuous and differentiable paths
in the t− x plane, or two definite mappings like t(x). Here it is assumed they do not intersect, and
−∞ < a(x) < b(x) < ∞, though I believe we can show that the a < b,∀x condition can be relaxed.
Also, we can speak to the limits |a|, |b| −→ ∞ as long as the surface f(x, t) vanishes rapidly enough
in these limits, so that the integral remains convergent.

A straightforward approach to obtain the formula is to apply the limit definition of the derivative:

dI(x)

dx
= lim

∆x→0

I(x+∆x)− I(x)

∆x

= lim
∆x→0

1

∆x

(∫ b(x+∆x)

a(x+∆x)

f(x+∆x, t)dt−
∫ b(x)

a(x)

f(x, t)dt

)
(5)

Now, we are concerned with the limiting behavior of this expression as ∆x −→ 0, as it becomes
a small parameter (as small as we like, but non-zero, yet). So we can perform a Taylor series
expansion of both the integrand, and the limits in the first integral in the expression (5). Let us
focus on that integral for now:∫ b(x+∆x)

a(x+∆x)

f(x+∆x, t)dt =

∫ b(x)+b′(x)∆x+....

a(x)+a′(x)∆x....

(
f(x, t) + f ′(x, t)∆x+

1

2!
f ′′(x, t)∆x2 + ....

)
dt (6)

where the primes denote partial differentiation with respect to x, b′(x) = ∂b(x)/∂x.
Note that in single-variable calculus (where we suppress the F (t)dt),∫ b+r

a

=

∫ b

a

+

∫ b+r

b

(7)∫ b

a+r

=

∫ b

a

−
∫ a+r

a

. (8)

We can apply these rules to our expanded integral to write Eq. (6) as∫ b(x)+b′(x)∆x+....

a(x)+a′(x)∆x....

(
f(x, t) + f ′(x, t)∆x+

1

2!
f ′′(x, t)∆x2 + ....

)
dt

=

∫ b(x)

a(x)

f(x+∆x, t)dt+

∫ b(x)+b′(x)∆x+...

b(x)

f(x+∆x, t)dt−
∫ a(x)+a′(x)∆x+...

a(x)

f(x+∆x, t)dt

=

∫ b(x)

a(x)

f(x, t)dt+∆x

∫ b(x)

a(x)

(f ′(x, t) +
1

2
f ′′(x, t)∆x+ ....)dt∫ b(x)+b′(x)∆x+...

b(x)

f(x, t)dt+∆x

∫ b(x)+b′(x)∆x+...

b(x)

(f ′(x, t) +
1

2
f ′′(x, t)∆x+ ...)dt

−
∫ a(x)+a′(x)∆x+...

a(x)

f(x, t)dt−∆x

∫ a(x)+a′(x)∆x+...

a(x)

(f ′(x, t) +
1

2
f ′′(x, t)∆x+ ...)dt (9)
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The first term is canceled by the subtraction in Eq. (5), and when we divide the rest by ∆x and
take the limit as ∆x −→ 0, we have

dI

dx
= lim

∆x→0

1

∆x

∫ b(x)+b′(x)∆x+...

b(x)

f(x, t)dt− 1

∆x

∫ a(x)+a′(x)∆x+...

a(x)

f(x, t)dt

+

∫ b(x)

a(x)

f ′(x, t)dt

+

∫ b(x)+b′(x)∆x+...

b(x)

f ′(x, t)dt−
∫ a(x)+a′(x)∆x+...

a(x)

f ′(x, t)dt (10)

Now, the last two terms here both vanish as ∆x → 0 as the limits of integration become nothing.
Another way of seeing this is to note that these integrals are ∼ ∆x and thus vanish in the limit.
Furthermore, using Eq. (1), we have

lim
∆x→0

1

∆x

∫ b(x)+b′(x)∆x+...

b(x)

f(x, t)dt = lim
∆x→0

favg(x, [b(x), b(x) + b′(x)∆x+ ...])

(
b′(x) +

1

2
b′′(x)∆x+ ...

)
= f(x, b(x))b′(x), (11)

with a similar result for the a(x) integral. Thus we are left with

dI

dx
=

=
d

dx

(∫ b(x)

a(x)

f(x, t)dt

)
=

[
f(x, b(x))

db(x)

dx
− f(x, a(x))

da(x)

dx

]
+

∫ b(x)

a(x)

∂f(x, t)

∂x
dt (12)

Equation (12) is known as the Leibniz rule for differentiation under the integral sign.

3 Exercises regarding application of the Leibniz rule

• Use Eq. (12) to derive the Euler-Lagrange equation, by finding an extremum of I with f(x, t) =
L(y(x, t), ẏ(x, t); t) (dot being derivative w/respect to t).

• Generalize the Euler-Lagrange result to one with prescribed variation of the boundary points
a(x), b(x).
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