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1 Mean Value Theorem
Claim:

Let f(z) € Cl*(z), where C[@?(z) is the set of all non-singular functions of a real variable
that are continuous on an interval [a,b] of R. Then for some zg € [a,b], f(xo) = favela, D]

Proof:

First, note that

b
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Since in one-variable we can interpret a definite integral as the (signed) area bounded between the
curve defined by f(z) and the z-axis (Riemann sum), we can put a bound on the integral. Define

f(z) = f(x) —min f(x) > 0. Then from Eq. (1),
0< favg[a, b] < max f(a:)

or equivalently,
min f(2) < fuvgla, ] < max f(2). (2)

The coordinates corresponding to the minimum and maximum of f(z), Zmin and Tpmax, form a
subinterval [Zmin, Zmax] € [a,b]. Since f(z) € Cl*¥(x), for 2 € [Zmin, Tmax] f(2) must take on all
values in [min f(z), max f(x)]. Therefore for some (possibly multiple) g € [Zmin, Tmax] € [a, )],
f(x0) = favgla, b].

Continuity of the functions is important, because if the functions are not continuous then this
is only true for a restricted set of discontinuous functions. For example, one function that does not
satisfy the MVT (for an interval containing the discontinuity) is

1 >0

f(x):{o <0’ (3)

for any finite interval [a,b] with a < 0 and b > 0 since 0 < fayy = 72 < 1 and f(z) is either 0 or
1. As long as f(x) is continuous (and non-singular) on an interval, then the MVT holds on that
interval.



2 Leibniz rule

What we want here is a formula for the rate of change of the definite integral of a surface f(x,t)

b(x)
I1fGe 0 ala).b@)] = [ flatds ()
a(z)

as we increase z, i.e. we want dI/dx. Here, a(z) and b(x) are continuous and differentiable paths
in the t — x plane, or two definite mappings like ¢(z). Here it is assumed they do not intersect, and
—o00 < a(z) < b(z) < oo, though I believe we can show that the a < b,V condition can be relaxed.
Also, we can speak to the limits |al, |b] — oo as long as the surface f(x,t) vanishes rapidly enough
in these limits, so that the integral remains convergent.

A straightforward approach to obtain the formula is to apply the limit definition of the derivative:

dl(z) I I(x + Ax) — I(2)
dz ~— Az>0 Ax
1 b(z+Az) ( ) b(z) ( ) ( )
= lim — / fx—i—Ax,tdt—/ flz, t)dt 5
Az—0 Ax a(z+Ax) a(x)

Now, we are concerned with the limiting behavior of this expression as Az — 0, as it becomes
a small parameter (as small as we like, but non-zero, yet). So we can perform a Taylor series
expansion of both the integrand, and the limits in the first integral in the expression (5). Let us
focus on that integral for now:

b(z+Ax) (z)+b" (z)Az+.... 1
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where the primes denote partial differentiation with respect to z, b¥/'(z) = 9b(x)/0x.
Note that in single-variable calculus (where we suppress the F( )dt),
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We can apply these rules to our expanded integral to write Eq. (6) as
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The first term is canceled by the subtraction in Eq. (5), and when we divide the rest by Ax and
take the limit as Ax — 0, we have
dI 1 b(x)+b' (z)Az+... 1 a(z)+a’ (z)Azt...
— = lim — t)dt — — t)dt

b(x)
+ / [z, t)dt
a(x)
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Now, the last two terms here both vanish as Az — 0 as the limits of integration become nothing.
Another way of seeing this is to note that these integrals are ~ Ax and thus vanish in the limit.
Furthermore, using Eq. (1), we have

1 o)+ @) At 1
Ali_rgo iz /b(z) flx, t)dt = Algicril)o fave (@, [b(2),b(x) + V' (z) Az + ...]) <b’($) + ib”(m)Ax + )
= f(@,b(x))¥' (x), (11)
with a similar result for the a(x) integral. Thus we are left with
ar _
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Equation (12) is known as the Leibniz rule for differentiation under the integral sign.

3 Exercises regarding application of the Leibniz rule

e Use Eq. (12) to derive the Euler-Lagrange equation, by finding an extremum of I with f(x,t) =
L(y(x,t),y(x,t);t) (dot being derivative w/respect to t).

e Generalize the Euler-Lagrange result to one with prescribed variation of the boundary points
a(z),b(x).



