

The Leibniz integral rule

Benjamin Eller

October 9, 2025

1 Mean Value Theorem

Claim:

Let $f(x) \in C^{[a,b]}(x)$, where $C^{[a,b]}(x)$ is the set of all non-singular functions of a real variable x that are continuous on an interval $[a, b]$ of \mathbb{R} . Then for some $x_0 \in [a, b]$, $f(x_0) = f_{\text{avg}}[a, b]$.

Proof:

First, note that

$$f_{\text{avg}}[a, b] = \frac{\int_a^b f(x) dx}{(b - a)}. \quad (1)$$

Since in one-variable we can interpret a definite integral as the (signed) area bounded between the curve defined by $f(x)$ and the x -axis (Riemann sum), we can put a bound on the integral. Define $\tilde{f}(x) = f(x) - \min f(x) \geq 0$. Then from Eq. (1),

$$0 \leq \tilde{f}_{\text{avg}}[a, b] \leq \max \tilde{f}(x)$$

or equivalently,

$$\min f(x) \leq f_{\text{avg}}[a, b] \leq \max f(x). \quad (2)$$

The coordinates corresponding to the minimum and maximum of $f(x)$, x_{\min} and x_{\max} , form a subinterval $[x_{\min}, x_{\max}] \in [a, b]$. Since $f(x) \in C^{[a,b]}(x)$, for $x \in [x_{\min}, x_{\max}]$ $f(x)$ must take on all values in $[\min f(x), \max f(x)]$. Therefore for some (possibly multiple) $x_0 \in [x_{\min}, x_{\max}] \in [a, b]$, $f(x_0) = f_{\text{avg}}[a, b]$.

Continuity of the functions is important, because if the functions are not continuous then this is only true for a restricted set of discontinuous functions. For example, one function that does not satisfy the MVT (for an interval containing the discontinuity) is

$$f(x) = \begin{cases} 1 & x \geq 0 \\ 0 & x < 0 \end{cases}, \quad (3)$$

for any finite interval $[a, b]$ with $a < 0$ and $b > 0$ since $0 < f_{\text{avg}} = \frac{b}{b-a} < 1$ and $f(x)$ is either 0 or 1. As long as $f(x)$ is continuous (and non-singular) on an interval, then the MVT holds on that interval.

2 Leibniz rule

What we want here is a formula for the rate of change of the definite integral of a surface $f(x, t)$

$$I[f(x, t); a(x), b(x)] = \int_{a(x)}^{b(x)} f(x, t) dt \quad (4)$$

as we increase x , i.e. we want dI/dx . Here, $a(x)$ and $b(x)$ are continuous and differentiable paths in the $t - x$ plane, or two definite mappings like $t(x)$. Here it is assumed they do not intersect, and $-\infty < a(x) < b(x) < \infty$, though I believe we can show that the $a < b, \forall x$ condition can be relaxed. Also, we can speak to the limits $|a|, |b| \rightarrow \infty$ as long as the surface $f(x, t)$ vanishes rapidly enough in these limits, so that the integral remains convergent.

A straightforward approach to obtain the formula is to apply the limit definition of the derivative:

$$\begin{aligned} \frac{dI(x)}{dx} &= \lim_{\Delta x \rightarrow 0} \frac{I(x + \Delta x) - I(x)}{\Delta x} \\ &= \lim_{\Delta x \rightarrow 0} \frac{1}{\Delta x} \left(\int_{a(x+\Delta x)}^{b(x+\Delta x)} f(x + \Delta x, t) dt - \int_{a(x)}^{b(x)} f(x, t) dt \right) \end{aligned} \quad (5)$$

Now, we are concerned with the limiting behavior of this expression as $\Delta x \rightarrow 0$, as it becomes a small parameter (as small as we like, but non-zero, yet). So we can perform a Taylor series expansion of both the integrand, and the limits in the first integral in the expression (5). Let us focus on that integral for now:

$$\int_{a(x+\Delta x)}^{b(x+\Delta x)} f(x + \Delta x, t) dt = \int_{a(x)+a'(x)\Delta x}^{b(x)+b'(x)\Delta x+...} \left(f(x, t) + f'(x, t)\Delta x + \frac{1}{2!} f''(x, t)\Delta x^2 + \dots \right) dt \quad (6)$$

where the primes denote partial differentiation with respect to x , $b'(x) = \partial b(x)/\partial x$.

Note that in single-variable calculus (where we suppress the $F(t)dt$),

$$\int_a^{b+r} = \int_a^b + \int_b^{b+r} \quad (7)$$

$$\int_{a+r}^b = \int_a^b - \int_a^{a+r}. \quad (8)$$

We can apply these rules to our expanded integral to write Eq. (6) as

$$\begin{aligned} &\int_{a(x)+a'(x)\Delta x}^{b(x)+b'(x)\Delta x+...} \left(f(x, t) + f'(x, t)\Delta x + \frac{1}{2!} f''(x, t)\Delta x^2 + \dots \right) dt \\ &= \int_{a(x)}^{b(x)} f(x + \Delta x, t) dt + \int_{b(x)}^{b(x)+b'(x)\Delta x+...} f(x + \Delta x, t) dt - \int_{a(x)}^{a(x)+a'(x)\Delta x+...} f(x + \Delta x, t) dt \\ &= \int_{a(x)}^{b(x)} f(x, t) dt + \Delta x \int_{a(x)}^{b(x)} (f'(x, t) + \frac{1}{2} f''(x, t)\Delta x + \dots) dt \\ &\quad \int_{b(x)}^{b(x)+b'(x)\Delta x+...} f(x, t) dt + \Delta x \int_{b(x)}^{b(x)+b'(x)\Delta x+...} (f'(x, t) + \frac{1}{2} f''(x, t)\Delta x + \dots) dt \\ &\quad - \int_{a(x)}^{a(x)+a'(x)\Delta x+...} f(x, t) dt - \Delta x \int_{a(x)}^{a(x)+a'(x)\Delta x+...} (f'(x, t) + \frac{1}{2} f''(x, t)\Delta x + \dots) dt \end{aligned} \quad (9)$$

The first term is canceled by the subtraction in Eq. (5), and when we divide the rest by Δx and take the limit as $\Delta x \rightarrow 0$, we have

$$\begin{aligned} \frac{dI}{dx} &= \lim_{\Delta x \rightarrow 0} \frac{1}{\Delta x} \int_{b(x)}^{b(x)+b'(x)\Delta x+\dots} f(x, t) dt - \frac{1}{\Delta x} \int_{a(x)}^{a(x)+a'(x)\Delta x+\dots} f(x, t) dt \\ &\quad + \int_{a(x)}^{b(x)} f'(x, t) dt \\ &\quad + \int_{b(x)}^{b(x)+b'(x)\Delta x+\dots} f'(x, t) dt - \int_{a(x)}^{a(x)+a'(x)\Delta x+\dots} f'(x, t) dt \end{aligned} \quad (10)$$

Now, the last two terms here both vanish as $\Delta x \rightarrow 0$ as the limits of integration become nothing. Another way of seeing this is to note that these integrals are $\sim \Delta x$ and thus vanish in the limit. Furthermore, using Eq. (1), we have

$$\begin{aligned} \lim_{\Delta x \rightarrow 0} \frac{1}{\Delta x} \int_{b(x)}^{b(x)+b'(x)\Delta x+\dots} f(x, t) dt &= \lim_{\Delta x \rightarrow 0} f_{\text{avg}}(x, [b(x), b(x) + b'(x)\Delta x + \dots]) \left(b'(x) + \frac{1}{2} b''(x) \Delta x + \dots \right) \\ &= f(x, b(x)) b'(x), \end{aligned} \quad (11)$$

with a similar result for the $a(x)$ integral. Thus we are left with

$$\begin{aligned} \frac{dI}{dx} &= \\ &= \frac{d}{dx} \left(\int_{a(x)}^{b(x)} f(x, t) dt \right) = \left[f(x, b(x)) \frac{db(x)}{dx} - f(x, a(x)) \frac{da(x)}{dx} \right] + \int_{a(x)}^{b(x)} \frac{\partial f(x, t)}{\partial x} dt \end{aligned} \quad (12)$$

Equation (12) is known as the Leibniz rule for differentiation under the integral sign.

3 Exercises regarding application of the Leibniz rule

- Use Eq. (12) to derive the Euler-Lagrange equation, by finding an extremum of I with $f(x, t) = L(y(x, t), \dot{y}(x, t); t)$ (dot being derivative w/ respect to t).
- Generalize the Euler-Lagrange result to one with prescribed variation of the boundary points $a(x), b(x)$.