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Quantum mechanical systems of many particles that move much slower than the speed of light
in a vacuum (c = 3× 108 m

s ) can be described by the many-body Schrödinger equation

i~
∂

∂t
Ψ(r1, ..., rN , t) = ĤΨ(r1, ..., rN , t). (1)

Ψ(r1, ..., rN , t) is the many-body wavefunction which contains all the information about a system of
N generally interacting particles that have coordinates ri at time t, and is the solution that we seek.
Ĥ is called the many-body Hamiltonian, and is a linear operator that represents the total energy of
the system (kinetic plus potential). This can include external potentials imposed upon the system as
well as interaction potentials between the different particles. For our purposes, Eq. (1) is a partial
differential equation in 3N + 1 independent variables. All the particles of the system are assumed
to be identical bosons of mass m (particles with integer valued intrinsic angular momentum, often
called “spin”), and the Hamiltonian will take the form

Ĥ =

N∑
k=1

(
−~2

2m
∇2

k + V (rk)

)
+ g

N∑
k=2

k−1∑
j=1

δ(rk − rj), (2)

~ = 1.055×10−34J·s being the reduced Planck’s constant (pronounced “h-bar”). What we have here
is a sum over single-particle operators that only act on the k-th particle plus a sum over distinct
interacting pairs (k, j). The single-particle operators are kinetic energy operators proportional to
∇2

k, and the external potential at position rk, V (rk). The interaction between the particles has
been assumed to be entirely due to contact forces in two-body collisions expressed as a Dirac delta-
function δ(rk−rj) and characterized by a strength g = 4π~2as/m, with as being the s-wave scattering
length which is a property of the particular atomic species. We cannot solve Eq. (1) exactly with this
Hamiltonian (in fact we cannot in the vast majority of situations), however we can attempt to find
stationary, approximate ground-state solutions using the variational method of quantum mechanics
wherein we guess a trial form of the wavefunction with parameters we can vary to find the form that
minimizes the expectation value of the energy (since we want the ground state). Since the many-body
wavefunction for identical bosons obeys the condition Ψ(..., ri, ..., rj , ..., t) = Ψ(..., rj , ..., ri, ..., t),
an arbitrary number of bosons can occupy the same quantum state and we can take as our trial
wavefunction Ψ(r1, ..., rN , t) = e−iEt/~∏N

k′′=1 φ(rk′′), where φ is the single-particle ground state
orbital. This form of the wavefunction would not work if the particles were fermions (particles with
odd half-integer values of spin), since they obey an antisymmetric condition Ψ(..., ri, ..., rj , ..., t) =
−Ψ(..., rj , ..., ri, ..., t), a consequence of which is the Pauli exclusion principle that states that no
two fermions can occupy the same quantum state. All of the atoms are assumed to be in the same
state of the system φ, and the wavefunction is symmetric under the interchange of two particles.
By substituting our trial wavefunction into Eq. (1), multiplying both sides by

∏N
k′=1 φ

∗(rk′) and
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integrating over all the space-coordinates of the system, with
∫
d3R =

∫
d3r1

∫
d3r2...

∫
d3rN , we

get the expectation value of the Hamiltonian

E[φ∗] =

∫
d3R

(
N∏

k′=1

φ∗(rk′)

)
N∑

k=1

(
−~2

2m
∇2

k + V (rk)

)( N∏
k′′=1

φ(rk′′)

)

+ g

∫
d3R

(
N∏

k′=1

φ∗(rk′)

)
N∑

k=2

k−1∑
j=1

δ(rk − rj)

(
N∏

k′′=1

φ(rk′′)

)
. (3)

We can separate off the wavefunctions not participating in the sums and write

E[φ∗] =

∫
d3R

N∑
k=1

 N∏
k′ 6=k

φ∗(rk′)φ(rk′)

φ∗(rk)

(
−~2

2m
∇2

k + V (rk)

)
φ(rk)

+ g

∫
d3R

N∑
k=2

k−1∑
j=1

 N∏
k′ 6=k 6=j

φ∗(rk′)φ(rk′)

φ∗(rk)φ∗(rj)δ(rk − rj)φ(rk)φ(rj). (4)

Now we can use the fact that the many-body wavefunction is normalized and therefore satisfies∫
d3R Ψ∗(r1, ..., rN )Ψ(r1, ..., rN ) = 1, (5)

and the properties of the Dirac delta-function to reduce Eq. (4) to

E[φ∗] =

N∑
k=1

∫
d3rkφ

∗(rk)ĥkφ(rk)

+ g

N∑
k=2

k−1∑
j=1

∫
d3rkφ

∗(rk)φ∗(rk)φ(rk)φ(rk), (6)

where ĥk =
(
−~2

2m ∇
2
k + V (rk)

)
. We can swap the sums in Eq. (6) for a factors of N and N(N −1)/2

respectively, since all the particles have the same wavefunction, leaving us with

E[φ∗] = N

∫
d3r

(
φ∗(r)ĥφ(r) +

g

2
(N − 1)φ∗2(r)φ2(r)

)
. (7)

Now what we want to do is add in the constraint that G[φ∗] =
∫
d3rφ∗φ− 1 = 0, and find the form

of φ that yields a stationary value of E[φ∗] − λG[φ∗], where λ is a Lagrange multiplier. This can
be accomplished by allowing either φ or φ∗ to vary arbitrarily. Here we vary φ∗, and denoting this
variation by δφ∗ we have

0 = (E[φ∗ + δφ∗]− E[φ∗])− λ(G[φ∗ + δφ∗]−G[φ∗])

=

(∫
d3r
(

(φ∗(r) + δφ∗(r))ĥφ(r) +
g

2
(N − 1)(φ∗(r) + δφ∗(r))2φ2(r)

)
(8)

−
∫
d3r

(
φ∗(r)ĥφ(r) +

g

2
(N − 1)φ∗2(r)φ2(r)

))

− λ

(∫
d3r(φ∗(r) + δφ∗(r))φ(r)− 1−

∫
d3rφ∗(r)φ(r) + 1

)
(9)
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Keeping only terms linear in δφ∗ we see that (with φ∗φ = |φ|2)∫
d3r δφ∗

{
N
(
ĥφ+ g(N − 1)|φ|2φ

)
− λφ

}
= 0. (10)

Since the δφ∗ are arbitrary, we can conclude that φ(r) must satisfy the equation(
−~2

2m
∇2 + V (r) + g(N − 1)|φ|2

)
φ = µφ. (11)

Equation (11) is known as the time-independent Gross-Pitaevskii equation (GPE), and we have

defined µ = λ/N which is still unknown. We have used the definition ĥ =
(
−~2

2m ∇
2 + V (r)

)
here

since Eq. (11) is how the equation is typically written in the literature. The factor of N − 1 shows
up because it was assumed that there is a definite number N of atoms in the condensate. Another
way to derive the time-independent GPE is to take as a trial wavefunction a coherent superposition
of ground states with different numbers of atoms. Doing so will result in a factor of N rather than
N − 1, however it corresponds to the average number of atoms instead. We note that the single-
particle wavefunction φ is related to the condensate wavefunction Φ used in the body of this thesis
in the following way, Φ =

√
Nφ, and therefore the condensate wavefunction is normalized so that∫

d3r|Φ|2 = N . If we multiply both sides of the GPE by φ∗ and integrate over all space, we get a
formula for µ:

µ =

∫
d3r

(
φ∗ĥφ+ g(N − 1)|φ|4

)
. (12)

Considering the energy functional (7), we can compute the chemical potential ∂E/∂N and show
that (since the entropy and volume are fixed):

∂E

∂N
=

∫
d3r

(
φ∗ĥφ+ g(N − 1/2)|φ|4

)
. (13)

We see that Eqs. (12) and (13) are the same if N >> 1, and conclude that in this limit we can
interpret µ as the chemical potential of the condensate, i.e. the energy required to add another
particle to it. Solutions of Eq. (11) and the determination of the chemical potential from Eq. (12) for
a given external potential V (r) yield an equilibrium mean-field approximate form of the wavefunction
that all particles in the system share. A time-dependent GPE can be found as well via the action
principle [1]

δ

∫ t2

t1

L(φ, φ∗, t) dt = 0 (14)

with the Lagrangian (for large N)

L(φ, φ∗, t) =

∫
d3r

[
i~
2

(
φ∗
∂φ

∂t
− φ∂φ

∗

∂t

)
−

( ~2

2m
|∇φ|2 + V (r)|φ|2 + (gN/2)|φ|4

)]
. (15)

There are a number of books on this subject, such as Refs. [1] and [2]. There are many more, but
these are complete works that cover all the basics and more in-depth topics of BEC, and are a good
start for the interested reader.
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